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Enlarged Geometries of Gauge Bundles
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The geometrical picture of gauge theories must be enlarged when a gauge potential
ceases to behave like a connection, as it does in electroweak interactions. When
the gauge group has dimension four, the vector space isomorphism between
spacetime and the gauge algebra is realized by a tetrad-like field. The object
measuring the deviation from a strict bundle structure has the formal behavior
of a spacetime connection, of which the deformed gauge field strength is the
torsion. A generalized derivative emerges in terms of which the two Bianchi
identities are formally recovered. Effects of gravitational type turn up. The
dynamical equations obtained correspond to a broken gauge model on a
curved spacetime.

1. INTRODUCTION

Differential geometry, in its modern fiber-bundle language, provides the
mathematical background for theories describing the known fundamental
interactions. The bundle of frames stands behind general relativity, while
other principal bundles, built up with the respective gauge groups, give a
clear picture of the kinematic setup behind electroweak and strong interactions
(Trautman, 1970; Wu and Yang, 1975; Daniel and Viallet, 1980). The picture
is commonplace: geometry supplies the stage set on which Lagrangians of
phenomenological origin rule over dynamics. Dynamics confers different
characters to gravitation, whose Lagrangian is of first order in the curvature,
and to the other interactions, whose Lagrangians are of second order in the
curvature. But in all cases it is a curvature which appears, and curvature is
a quantity derived from a connection. The metric keeps the central role in
gravitation, but the basic fields in the other cases are gauge potentials, that
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is, connections. A splendid experimental record favors the existing theories
and justifies the belief that much of their content is of perennial value.

There are, however, some cloudy spots in this sunny landscape. There
are too many arbitrary constants and a obstinate lack of unity with respect
to general principles. Gravitation alone is universal, can be locally simulated
by a moving frame, has a problematic energy and is power-counting nonrenor-
malizable. Some of the mediating bosons are massless and have problematic
charges. Other are massive and have well-defined charges. And there is the
question of the meaning to be attributed to spontaneous symmetry breakdown.
The presence of a remnant scalar field adds to the difficulties (Gaillard et
al., 1999). This blending of experimental success and theoretical bafflement
suggests that, though the gauge principle is promised an important role in
an eventual final theory, the simple, direct gauge prescription will not have
the last say as it stands. In the search for a more comprehensive framework,
string theory, with its ultimate goal of explaining, in principle, “everything,”
is the dominating trend.

We present here a few more steps toward another proposal (Aldrovandi,
1995), which starts from gauge theories and looks for the minimal modifica-
tions necessary to shed light on at least some of these difficulties. It takes
into account two initial clues. The first is supported by all the experimental
evidence and is concerned with the peculiar behavior of the electroweak
gauge potentials. The gauge potentials appearing in chromodynamics and
isolated electromagnetism, as well as the Christoffel symbols in gravitation,
behave strictly as connections, but the vector fields describing real particles
in electroweak theory do not. The theory does start with a connection-behaving
gauge potential, but then spontaneously breaks the symmetry by introducing
an external field. The final combinations, representing the physical fields,
do not transform as connections. This leads to the second clue, more mathe-
matical in nature: when a gauge field ceases to behave like a connection, the
whole geometric picture provided by the underlying bundle is blurred. What
happens to the bundle picture when a connection, or part of it, adopts an
abnormal behavior?

The connection adjoint behavior is essential to the bundle picture. On
the bundle tangent spaces it is reflected in the commutators of the vector
fields coming from the base manifold (external space, spacetime) and from
the structure (internal, gauge space) group. Vector fields are derivatives, and
a connection allows mixing internal and external vectors to produce more
general, covariant derivatives while preserving the bundle makeup. This
preservation comes from the connection adjoint behavior. Any deviation from
that behavior changes the whole picture, and the electroweak physical fields
do deviate. Some encouraging results were obtained in which an abnormal



Gauge Theory and Gravitation 2781

behavior of a gauge potential was shown to engender fields strongly sugges-
tive of linear connections with their curvatures and torsions (Aldrovandi,
1991a), hinting thereby at a relationship with gravitation. We intend here to
present some new results on the subject, valid when the gauge group has, as
in the Weinberg–Salam theory, dimension 4.

We start (Section 2) with a formal compact on Lie algebra extensions.
In this section we also examine the behavior of the Lie algebra of fields on
a manifold under changes of basis. To alleviate notation we shall, as a rule,
omit projections, their differentials, and corresponding pullbacks. In Section
3 we introduce an enlarged concept of change of basis in the principal fiber
bundle and we apply it successively to the simplest conceivable geometric
configuration and obtain three kinds of commutation relations: those of a
gauge theory, those of an extended gauge theory, and those of a gravitational
model. Noncovariant derivatives, akin to those appearing in electroweak
theory, turn up naturally in the extended formalism. In Section 4 we begin
discussing which aspects of the geometric picture can be retained in the
presence of anomalous connections. When the base manifold and the gauge
group have the same dimension, as is the case involving spacetime and the
electroweak theory, a tetrad-like field is naturally introduced to represent the
isomorphism of the underlying vector spaces of the tangent field algebras.
The object measuring the breaking of the bundle structure acquires the aspect
of an external, linear connection, which preserves the metric defined by the
tetrad and is endowed with curvature and torsion. Thus, the same objects of
usual geometry are found and strongly suggest a relation to gravitation.
Section 5 shows that such objects have the expected geometrical properties
and lead to reasonable dynamical equations. Many results previously found
for the translation group (Aldrovandi, 1991b) are extended to the non-Abelian
case. It should be emphasized that, due to the presence of noncovariant
objects, even the most trivial formulas of tensor calculus must be reworked
from the start. Some of them survive, others are modified. A very general
derivative shows up involving simultaneously gauge and “gravitational”
aspects. Dynamics for the gauge sector can be obtained by assuming the
persistence of the duality symmetry and, for the gravity sector, by a procedure
analogous to that used in general relativity. The final section sums up the
results and the many unsolved problems.

2. EXTENSIONS OF TANGENT ALGEBRAS

We shall find it necessary to call attention to a certain number of
elementary facts, and introduce notation through an overview of well-known
notions. A Lie algebra is a vector space on which a binary internal operation
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is defined which is antisymmetric and satisfies the Jacobi identity. The opera-
tion will be indicated by the commutator, and the algebra whose underlying
vector space is V will be denoted V 8. For simplicity, the same notation will
be used for a Lie group G and its Lie algebra G8. The algebra is characterized
by the operation table written in a vector basis {Ya} of members, [Ya, Yb]V

5 fgab Yg. The numbers fgab are the structure constants of V 8. We shall
sometimes indicate the algebra by one of its bases, as in V 8 5 {Ya}.

In order to discuss the extension of a Lie algebra L8 by another Lie
algebra V 8, notice that the direct sum E 5 L % V of the underlying vector
spaces L and V is always defined. To extend L8 by V 8 means, in general
terms, to give an answer to the following question: when and how can we
combine L8 and V 8 to build another Lie algebra E8 with underlying vector
space L % V? In the generic case, many answers are possible, provided L8
has a representation acting on V 8. Two main points should be specified: (i)
the insertion of the algebras in the enlarged space E and (ii) the relationship
between the algebras after the insertion.

We shall be interested in extensions involving the algebras of vector
fields on differentiable manifolds. The pattern introduced below is closely
related to that present on the total manifold P of a principal bundle (Kobayashi
and Nomizu, 1963).

Let P be a differentiable manifold. It will have a tangent space TpP at
each point p P P. A vector field X is a differentiable choice of a vector Xp

at each TpP. In general, making such a choice is only possible locally, that
is, on an open neighborhood of each point p. For that reason all the discussion
which follows will be purely local in character. If the manifold is C `, X will
act on a space R(P) of infinitely differentiable real functions on P.

The set of all vector fields on P constitutes an infinite Lie algebra J(P).
Consider a Lie group whose Lie algebra G8 has generators Jm satisfying the
commutation rules

[Jm, Jn] 5 f l
mn Jl (1)

When G acts on P as a transformation group, there is a representation
r of its generators by fields on P. This means (Aldrovandi and Pereira, 1995)
that r chooses, for each Jm, a representative field Ym P J(P):

r: G8 → J(P)

r: Jm → Ym 5 r(Jm) (2)

The representation r will be a linear representation when the representative
fields have the same commutation rules as the fields they represent:

[Ym, Yn]J(P) 5 f l
mn Yl (3)

Suppose that a first representative algebra L8 5 {Ym} is given around a point
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p on P, with a number d , dim P of generators. Consider also a linear
representation, also around p, of another algebra V 8, locally given by a
number n 5 dim P 2 d of fields Xa with commutations

[Xa , Xb]J(P) 5 f c
ab Xc (4)

If all the involved fields Ym and Xa are linearly independent, the set {Ym, Xa}
constitutes a local basis around p. Notice that, once an algebra is represented
by vectors at a point p P P, its structure constants can become point dependent
(structure coefficients) when these vectors are extended into vector fields
around p. As a last basic assumption, suppose the commutation table in that
basis has the form

[Ym, Yn]J(P] 5 f l
mn Yl 2 ba

mn Xa

[Ym, Xa]J(P) 5 C b
ma Xb (5)

[Xa , Xb]J(P) 5 f c
ab Xc

bmn is a 2-form with values in the V 8 sector. It characterizes the deviation
from the linearity (3) of the algebra {Ym} caused by its association with the
algebra {Xa}. The latter, by the above relations, is unaffected: it is simply
included in E8, and its structure coefficients remain constant:

[Xa , Xb]J(P) 5 [Xa , Xb]V 5 f c
ab Xc

The middle expression in (5) says that the result of any action of L8 on V 8
stays in V 8. For each fixed m, the field Ym is represented on the Xa by the
matrix Cm whose entries are the coefficients Cb

ma. The algebra E8 specified
by (5) is an extension of the representative field algebra of L8 by the representa-
tive field algebra of V 8.

An extension is trivial when there is no departure from linearity, that
is, when ba

mn 5 0. The extension is a direct product when the fields Ym act
on the Xa by the null representation, that is, when Cb

ma 5 0. This will be a
necessary (but not sufficient) condition for the geometry of gauge theories.

The compound so obtained depends, thus, on the pair (Cb
ma, ba

mn). The
extended algebra should be a Lie algebra, so that we impose the Jacobi
identities on the fields obeying (5). Three conditions result which must be
respected by any pair (Cb

ma, ba
mn):

Ym(ba
ns) 1 Ys(ba

mn) 1 Yn(ba
sm) 1 Ca

ncbc
sm 1 Ca

scbc
mn 1 Ca

mcbc
ns

1 f r
mnba

sr 1 f r
smba

nr 1 f r
nsba

mr 5 0 (6)

Ym(Ca
nb) 2 Yn(Ca

mb) 1 Ca
mcCc

nb 2 Ca
ncCc

mb 2 f r
mnCa

rb

2 Xb(ba
mn) 2 bc

mn f a
bc 5 0 (7)
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Xa(Cc
mb) 2 Xb(Cc

ma) 2 Cd
ma f c

bd 1 Cc
md f d

ba 1 Cd
mb f c

ad 5 0 (8)

An extension is central when bc
mn Xc has all its elements in the center

of the algebra V 8. In particular, it follows from (7) that every direct product
(Ca

mb 5 0) is a central extension. In effect, in that case

[Xb , ba
mn Xa]J(P) 5 {Xb(bc

mn) 1 f c
baba

mn}Xc 5 0 (9)

Let us examine what happens to the above commutation tables under a
change of basis. Starting from the basis {Ym, Xa} on the whole manifold P,
we introduce the particular transformationss

Y8m 5 Ym 2 ac
m(x)Xc (10)

where the aa
m are point-dependent objects on P. In the applications we have

in mind P will be the total space of a bundle with spacetime as base manifold.
The fields Ym will represent translations on spacetime, so that the coefficients
f r

mn are a mere signal of anholonomy. We shall take for {Ym} a holonomic
basis, so that f r

mn 5 0 in (5)–(7). Notice that the nonlinearity indicator ba
mn

is not an anholonomy coefficient for {Ym}, as it points toward other directions
in the algebra. Notice that we consider (10) as a change of basis on the whole
local algebra of vector fields on P. The new set of commutation relations is
(we also drop the index J(P) from now on)

[Y 8m, Y 8n] 5 2 b8a
mn Xa (11)

[Y 8m, Xa] 5 C8b
ma Xb (12)

[Xa , Xb] 5 f c
ab Xc (13)

with new coefficients given by

C8b
ma 5 Cb

ma 2 ac
m f b

ca 1 Xa(ab
m) (14)

b8a
mn 5 ba

mn 1 Ka
mn (15)

and

Ka
mn 5 Y 8maa

n 2 Y 8naa
m 1 ab

m Xb(aa
n) 2 ab

n Xb(aa
m)

1 ab
nC8a

mb 2 ab
mC8a

nb 1 f a
bcab

mac
n (16)

Relations (14)–(16) are such that the forms of the Jacobi identities are
preserved under (10). This is important because, as we shall see later, the
field equations will come from Jacobi identities.

3. CHANGES OF BASIS

The simple scheme of basis transformation presented above can, if we
start from a trivial initial algebra, engender three types of algebra: that of a
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gauge theory, the extension given above or the forthcoming extended algebra
of Section 4, and the algebra corresponding to a gravitational model. Assum-
ing the validity of the duality prescription applied to the Bianchi identities,
we can also obtain the corresponding dynamics of each theory.

We shall take as starting field configuration that appearing on a fiber
bundle whose structure group G has Lie algebra G8 5 {Xa} and whose base
manifold is spacetime represented by the trivial holonomic basis {m}. The
set of commutation relations is

[m, n] 5 0

[Xa , m] 5 0 (17)

[Xa , Xb] 5 f c
ab Xc

It represents a trivial and direct-product extension of the translation algebra
by G8, or vice versa. Physically, it corresponds to a theory without interaction.

Let us first make in (17) a change of basis

Xm 5 m 2 aa
m Xa (18)

imposing that it preserves the direct-product character. It leads to

[Xm, Xn] 5 2ba
mn Xa

[Xa , Xm] 5 0 (19)

[Xa , Xb] 5 f c
ab Xc

It follows from (14) that

Xa(ab
m) 5 f b

caac
m (20)

This behavior characterizes a as a connection, or an adjoint-behaved 1-form.
It may seem that a derivative, vacuum term is missing, but we are working
on the bundle and the vacuum term only comes out when the connection is
pulled back to spacetime by a section.

From (15) and (16) we obtain the expression for the nonlinearity
indicator:

ba
mn 5 maa

n 2 naa
m 1 f a

bcab
mac

n (21)

Since in a direct product the extension is central we must have

[Xa , bc
mn Xc] 5 0 (22)

and consequently

Xa(bc
mn) 5 f c

babb
mn (23)

This condition, which can be equally obtained from (7), says that also b
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belongs to the adjoint representation of the group whose generators are
represented by Xa.

The above algebraic configuration is just the structure appearing in a
gauge theory, where b is the field strength of the gauge potential a. The
change of basis (18) corresponds to the covariant derivative introduced in
gauge theories by the minimal coupling prescription.

Gauge field dynamics can be obtained via the duality prescription: the
sourceless field equations are written just like the Bianchi identities, but
applied to the dual of the field strength. This dual depends on the metric.
Recall that, of Maxwell’s equations, one pair is metric insensitive (they are
Bianchi identities), whereas the other is metric dependent (they are the real
dynamical equations). In principle, any metric which is preserved by the
derivation will do, but different metrics lead to inequivalent equations. We
simply assume the existence of such a metric. We obtain the field equations
for a by first finding the Jacobi identity for three fields Xm, Xn, Xr in algebra
(19)—which gives a Bianchi identity—and then applying the duality prescrip-
tion. The Yang–Mills equations come out:

Xmbamn 5 0 (24)

From the point of view of the theory of algebra extensions, the next
natural step would be to break the direct product in (19) by another change
of basis,

X 8m 5 Xm 2 ga
m Xa (25)

and investigate the kind of physical theory to which the resulting configuration
can be associated. Expression (25) leads to the following commutation
relations:

[X 8m, X 8n] 5 2 b8a
mn Xa

[X 8m, Xa] 5 C8c
ma Xc (26)

[Xa , Xb] 5 f c
ab Xc

which just corresponds to the extended theory of the previous section. Now,
it follows from (14) that

Xb(ga
m) 5 f a

cbgc
m 1 C8a

mb (27)

Comparison with (20) shows that C8a
mb measures the deviation from covariant

behavior of the object ga
m appearing in (25). With the help of (18), we can

express (25) as

X 8m 5 m 2 sa
m Xa (28)

with sa
m [ (aa

m 1 ga
m). We shall call (28) a generalized derivative. In fact
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we shall, from now on, give that name to each derivative which is not the
standard gauge-covariant derivative. The behavior of s under the group
action is

Xb(sa
m) 5 f a

cbsc
m 1 C8a

mb (29)

The new nonlinearity indicator b8a
mn can be obtained from (15) using (16)

and (21):

b8a
mn 5 msa

n 2 nsa
m 1 f a

bcsb
msc

n 2 C8a
cmsc

n 1 C8a
cnsc

m (30)

(C8a
bm 5 2 C8a

mb). This is the general expression for the deviation from
linearity in the presence of an object with behavior given by (29). The
behavior of b8 under the group action is fixed by the Jacobi identity (7),
replacing Ym by X 8m and C by C8.

The dynamics associated to algebra (26) is obtained by applying the
duality prescription in a way analogous to that leading to the Yang–Mills
equations. The Jacobi identity involving three fields X 8m in (26) is

X 8m(b8a
ns) 2 C8a

cmb8c
ns 1 X 8s(b8a

mn) 2 C8a
csb8c

mn

1 X 8n(b8a
sm) 2 C8a

cnb8c
sm 5 0 (31)

Applying this expression to the dual of b8a
mn, we find for the field equations

X 8mb8amn 2 C8a
dmb8dmn 5 0 (32)

These equation are, of course, linked to the choice of C8, which is constrained
by the Jacobi identity (8).

The set of commutators (26) can be obtained directly from (17) by the
basis change (28). The above two-step procedure is, however, appropriate to
show how it can be attained from the algebraic scheme of a gauge theory.
The 1-form sa

m appearing in the generalized derivative can be seen as a
connection deformed by the addition of a noncovariant form (Aldrovandi,
1991b).

We can infer using (30) in (32) that a mass term for s can appear. Thus,
this second change of basis (or a change of basis in a gauge configuration)
leads to a theory with massive vector fields which do not behave like connec-
tions. This is what happens in the Weinberg–Salam model.

Another change of basis may be introduced as follows. Going back to
(31), we see that it has the form of a Bianchi identity for a still more general,
enlarged derivative X 8*m, which can be defined by its action on a indexed
object Zc as

X 8*m(Zc) 5 X 8m(Z c) 2 C8c
am(Z a) (33)

To be acceptable as a derivative, X 8*m must obey the Leibniz rule, which
leads to some interesting consequences. For example, for a scalar of type Z aZa ,
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X 8*m(Z aZa) 5 X 8m(Z aZa) (34)

For a lower-indexed object,

X 8*m(Zc) 5 X 8m(Zc) 1 C8e
cm Ze (35)

and for a mixed product,

X 8*m(Z dJc) 5 X 8m(Z dJc) 1 C8e
cm(Z dJe) 2 C8d

em(Z eJc) (36)

Expression (33) leads to the commutators

[X 8*m, X 8*n](Z c) 5 2b8a
mn Xa(Z c) 2 R8c

amn Z a (37)

[X 8*m, Xa](Z c) 5 Xa(C8c
dm)Z d (38)

where b8a
mn is given by (30) and

R8c
amn 5 X 8mC8c

an 2 X 8nC8c
am 2 C8c

bmC8b
an 1 C8c

bnC8b
am (39)

The relation between C8 and its algebraic derivative is given by Jacobi
identity (8).

Besides the same nonlinear coefficient b8a
mn appearing in (26), the extra

nonlinear term R8c
amn appears. The relationship between these coefficients is

provided by the Jacobi identity for the fields Xa , X 8m, X 8n:

Xb(b8a
mn) 1 f a

bcb8c
mn 1 R8a

bmn 5 0 (40)

The dynamics corresponding to configuration (37) and (38) is examined
in the next two sections.

4. ENLARGING THE GEOMETRY

In the fiber bundle structure, a local basis always exists (Cho, 1975) in
which the commutation table takes the form (19). This means that real
geometry, or real bundles, only admit quantities behaving as connections.
Extended field algebras involve an object behaving differently. We endeavor
now to move a little beyond the strictly geometric canvas by finding which
properties can still be retained in the presence of such a misbehaving element
and which requirements should be imposed if we insist on remaining as near
as possible to usual geometry.

First, we would like to relate the new objects to gravitation, and R8c
amn

would bear some resemblance to a curvature written in the basis {X 8n} if C8
were a connection. However, (39) is not the correct expression for a curvature.
A term involving a contraction of the basis anholonomy coefficient with the
connection is missing. Furthermore, the b8a

mn term in (37) should be a torsion,
or an anholonomy, but is not: for that, it should have values along X 8*m.
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Under the assumption that the dimensions of the two algebras are the
same, a solution to these problems comes from the following considerations.
The vector spaces underlying two algebras of the same finite dimension are
isomorphic (we insist: only as vector spaces). The isomorphism can be realized
by a mapping H between them, such as

X 8m 5 H a
m Xa (41)

The mapping described by H a
m should be invertible. If we have spacetime

in mind, the group should be itself 4-dimensional. The isomorphism in view
would actually be between the tangent spaces, and should hold at each point
of the manifold. Provided some reasonable differentiability conditions are
met, the set {H a

m} will be similar to a tetrad field. We shall use for the
inverse the usual tetrad notation, so that H a

mHb
m 5 da

b and H a
mHa

n 5 dn
m.

Applying (41) to the second commutator in (26), we obtain

XaH d
m 5 f d

caH c
m 2 C8d

ma (42)

A brief calculation leads to

[X 8m, X 8n] 5 2b8r
mn X 8r (43)

with

b8r
mn 5 b8a

mn Ha
r (44)

showing (2b8r
mn) in the role of the nonholonomy coefficient for the basis

{X 8m}.
Taking (41) into (33), we obtain the relation between Xa and X 8*m:

XaZ c 5 H m
a(X 8*mZ c 1 C8c

bmZ b) (45)

The commutator (37) can then be rewritten as

[X 8*m, X 8*n](Zc) 5 2b8r
mn X 8*r Z c 2 5c

amn Z a (46)

where now

5c
amn 5 X 8mC8c

an 2 X 8nC8c
am 2 C8c

bmC8b
an 1 C8c

bnC8b
am 1 b8r

mnC8c
ar

(47)

This is the correct expression of the curvature of a connection C8 in basis
{X 8m} (Nakahara, 1990). It can be shown that the commutator in (46), if
applied to a mixed object with internal and external indices, only acts on
those internal.

Let us examine some more properties of the candidate connection C8.
Taking Xa 5 H m

a X 8m into the second commutator of (26), we obtain
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C8b
am 5 H b

lC8l
nm Ha

n 1 Ha
n X 8m(H b

n) (48)

which shows that C8 behaves, under the the action of H m
a, as a connection

of the linear group would behave under a tetrad, with C8l
nm 5 b8l

mn. A
curious consequence is that

X 8*lb8r
mn 5 X 8lb8r

mn (49)

The torsion tensor is T r
mn 5 2b8r

mn. From (42) and (48) it can be written as

T r
mn 5 Ha

r(X 8m H a
n 2 X 8n H a

m 1 f a
bc H b

m H c
n) (50)

The deformed Yang–Mills field strength acquires the rank of a torsion. Due
to the last term in (50), it would be better to call T r

mn a “generalized torsion
tensor.” It reduces to usual torsion in the Abelian case (Aldrovandi, 1991b).
One should remember that usual torsion is a 2-form with values in the algebra
of translation generators. In the present case, torsion has values in the assumed
gauge group algebra, which is non-Abelian. This is the origin of the extra term.

As with usual tetrads, the H a
m can be used to transmute indices from

the gauge algebra to spacetime and vice versa. However, due to the presence
of noncovariant objects, the usual properties do not follow automatically;
every one must be verified by direct calculation. For example, computation
gives, for the curvature, just what we would expect from a tensorial object,

5r
smn 5 X 8mC8r

sn 2 X 8nC8r
sm 2 C8r

amC8a
sn 1 C8r

anC8a
sm 1 b8g

mnC8r
sg

(51)

As in (49), it happens that

X 8*l5r
smn 5 X 8l5r

smn (52)

It is important to notice that the enlarged derivative, acting on objects with
the indices transmuted to spacetime indices, changes its form. As happens
with covariant derivatives, it will take a different aspect when acting on
objects with one or two indices. The simplest way to discover its form is to
read it from the Bianchi identities, as we shall do below.

5. APPROACHING A GRAVITATIONAL MODEL

In the previous section we obtained (i) an anholonomy or torsion term
in the commutator and (ii) the correct expression for the curvature in a
nonholonomic basis. In what follows we show that two other geometrical
landmarks also hold: the two Bianchi identities for linear connections. Despite
their purely geometrical character, Bianchi identities are, both in gauge theo-
ries and in general relativity, intimately related to dynamics, so that we shall
also comment on the field equations. The procedure adopted here parallels
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those theories. The field equations are obtained by applying the duality
prescription to the sole Bianchi identity present in the gauge sector. In the
gravity sector, a contracted Bianchi identity is used to recognize which
expression is to be identified to the source current. Properties (49) and (52)
hold in general when we derive objects with external indices only. Thus, the
metric gab used in (32) can be used in the following. We see from (41) that,
if preserved by X 8*m, it also will be gauge invariant. Recognizing (33) in
the field equation (32) and adding a source current, we arrive at

X 8*mb8amn 5 Jan (53)

As the deformed Yang–Mills field coincides with torsion, this equation fixes
the dynamics for both. Applying X 8*n to this equation, we find a rather
surprising result:

X 8*nJan 5 0 (54)

This “current conservation” shows that some invariance must still be at work,
although its meaning is not clear. Notice that the commutation relations, the
new covariant derivatives and the dynamics of sc

m have all been constructed
or obtained with respect to the Jacobi identities, which are, for tangent vector
fields, integrability conditions. Once the duality symmetry also is supposed
to hold, some invariance is to be expected.

Which kind of gravitational model would turn up? Using (47), we can
write Eq. (40) as

Xab8c
mn 1 f c

eab8e
mn 5 25c

amn 1 H r
db8d

mnC8c
ar (55)

which presents 5b
amn as an effect of b’s noncovariance. Applying H a

c H a
s,

we find

5a
smn 1 X 8*s(b8a

mn) 5 0 (56)

The Ricci tensor is not symmetric,

5sn 1 X 8*s(b8a
an) 5 0 (57)

which is to be expected in the presence of torsion. The gravitational sector
would be close to an Einstein–Cartan model, but with dynamical torsion.
Combined with (56), (51) leads to

X 8l(b8r
nm) 1 X 8m(b8r

ln) 1 X 8n(b8r
ml)

5 2b8a
mnb8r

la 2 b8a
lmb8r

na 2 b8a
nlb8r

ma (58)

Let us now show that the two Bianchi identities have the same formal
aspect they have in usual geometry. We start by calculating the Jacobi identity
for X 8*m, X 8*n, and X 8*l,
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[X 8*l, [X 8*m, X 8*n]](Z c) 1 [X 8*n, [X 8*l, X 8*m]](Z c)

1 [X 8*m, [X 8*n, X 8*l]](Z c) 5 0 (59)

We first obtain one of the three cyclic terms:

[[X 8*l, [X 8*m, X 8*n]](Z c) 5 [b8r
mnb8a

lr 2 X 8*lb8a
mn]X 8*a(Z c)

2 [X 8*l5c
amn 2 b8r

mn5c
arl]Z a

We can here read the enlarged derivative acting on an object with one
transmuted index. The expression inside the first bracket in the right-hand-
side is, up to the sign, equal to X 8lb8a

mn 2 C8a
rlb8r

mn. This is the enlarged
derivative acting on b8a

mn.
Applying (56), the tensorial character of 5, and X 8*l(Ha

s) 5 Ha
dC8s

dl,
we can rewrite this expression as

[X 8*l, [X 8*m, X 8*n]](Z c) 5 [b8r
mnb8a

lr 1 5a
lmn]X 8*a(Z c)

1 H c
aHa

s[5r
smnb8a

lr 2 5a
rmnb8r

ls 2 5a
srlb8r

mn 2 X 8*l5a
smn]Z a

The identity (59) becomes then

X 8*a(Z c)[b8r
mnb8a

lr 1 b8r
lmb8a

nr 1 b8r
nlb8a

mr 1 5a
lmn 1 5a

nlm

1 5a
mnl] 5 2H c

a Ha
s Z a{X 8*n5a

slm 2 C8a
rn5r

slm

1 C8r
sn5a

rlm 2 b8r
ln5a

srm 1 X 8*l5a
smn 2 C8a

rl5r
smn

1 C8r
sl5a

rmn 2 b8r
ml5a

srn 1 X 8*m5a
snl 2 C8a

rm5r
snl

1 C8r
sm5a

rnl 2 b8r
mn5a

srl} 5 0 (60)

With the term proportional to X 8*a(Z c) in mind, we calculate

5a
lmn 1 5a

nl 1 5a
nlm 1 b8r

mnb8a
lr 1 b8r

lmb8a
nr 1 b8r

nlb8a
mr

5 2[X 8mC8a
ln 1 X 8nC8a

ml 1 X 8lC8a
nm 2 b8r

mnb8a
lr

2 b8r
lmb8a

nr 2 b8r
nlb8a

mr]

The term inside the brackets vanishes by the Jacobi identity (31) with all the
indices in spacetime. The left-hand side is the factor of X 8*a(Z c) in the first
term of (60), which consequently vanishes, too. The remaining content of
(60) is the vanishing of the term proportional to Z a, whose meaning we
examine in the following. Notice that the above left-hand side has another
interest: the fact that it is zero, combined with (58), results in

5a
lmn 1 5a

nlm 1 5a
mnl 5 X 8l(b8a

nm) 1 X 8m(b8a
ln) 1 X 8n(b8a

ml) (61)

As b8a
mn is the torsion, this is just the expression for the first Bianchi identity

to which linear connections submit (Kobayashi and Nomizu, 1963).
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To analyze the vanishing of the term proportional to Z a, it is convenient
to read in (60) itself the form of the enlarged derivative in the nonholonomic
basis {X 8m} when applied to an object with two transmuted indices, like 5a

lmn.
It has the same expression as the usual covariant derivative:

Dn5a
slm 5 X 8n5a

slm 2 C8a
rn5r

slm 1 C8r
sn5a

rlm 2 b8r
ln5a

srm

(62)

where use has been made of (52). The identity then reduces to

Dn5a
slm 1 Dl5a

smn 1 Dm5a
snl 5 0 (63)

which has the form of the second Bianchi identity.
We now follow a path which parallels that used in general relativity to

identify the geometrical object appearing in the field equation, analogous to
the Einstein tensor. Contracting first a with l and then using the preserved
metric gab to contract the remaining indices, we get

Dn5m
m 1 Da5am

mn 1 Dm5m
n 5 0

This contracted Bianchi identity takes the form

DaGas 5 0 (64)

provided we define

Gas 5 5as 2 gas5 2 gsn5am
mn (65)

This expression would lead to an object quite similar to the Einstein tensor
if 5ab

lm were antisymmetric in the first two indices.
We have obtained the two Bianchi identities of usual geometry with

torsion. To recover all the features of a real geometry the only missing point
is the direct product of the vector field algebras. We see in (38) the possibility
of recovering the direct product by setting Xa(C8c

dm)Z d 5 0, which includes
the invariance of C8 under the group action,

Xa(C8c
dm) 5 0 (66)

This would mean a constant C8a
bm, but not a constant C8r

mn, so that the
curvature would keep its general form (51). It is important to notice that
such a condition to establish the direct product could only be realized because
we made the change of basis (33). It could not be done inside the extended
gauge theory since we wanted to preserve the misbehaving elements.

The validity of the scheme is restricted to gauge groups with the dimen-
sion of spacetime. In consequence the extended gauge scheme, besides
describing a theory with massive fields that do not behave as connections,
also describes a theory for a group with the dimension of spacetime. If we
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take this dimension equal to 4, a group that could be chosen is the SU(2) ^
U(1) of the Weinberg–Salam model. The condition on the dimension of the
group guarantees the existence of the mapping Ha

n and its inversibility. The
introduction of H allowed us to recover the usual geometric interpretation
of curvature and torsion. Significantly, the behavior of C8 is the same as that
of an external connection. The gravitational sector would exhibit curvature
and see the deformed gauge field as a torsion, with dynamics given, respec-
tively, by (57) and (53).

6. OPEN QUESTIONS AND FINAL REMARKS

We have seen how, when a gauge potential ceases to behave like a
connection, the bundle picture of gauge theories becomes shaky. The arena
appropriate to discuss the new situation is no longer bundle theory, but
the theory of Lie algebra extensions, which allows for the modified local
commutators coming to the fore. The object measuring the breaking of the
bundle scheme is reminiscent of a linear, external, spacetime connection. A
new, noncovariant, generalized derivative emerges naturally which is analo-
gous to that appearing in electroweak theory in the presence of a gravitational
field. This suggests a link between electroweak interactions and gravitation.
The suggestion is strengthened by a dimensional coincidence: spacetime and
the Lie algebra of the electroweak group are both 4-dimensional and, as
vector spaces, isomorphic. This isomorphism can be realized by a tetrad-
like field H which, once introduced, reorganizes the whole picture. Objects
corresponding to the curvature and the torsion of the candidate linear connec-
tion turn up at the right places in the commutation relations and obey formally
the two Bianchi identities of differential geometry. The broken gauge field
strength appears in the role of torsion. The dynamical equations obtained
correspond formally to a broken gauge model on a spacetime endowed
with curvature.

We are far from having solved all the questions raised by the approach.
The crucial, obvious problem which remains unsolved is that of the necessary
index transmutation. We do obtain quantities resembling a connection, a
curvature, and a torsion by their behavior. The connections related to gravita-
tion are, however, related to the Lorentz group. This means that, instead of
our internal indices, we should have indices related to some vector or tensor
representation of the Lorentz group. This is clear in the case of real tetrad
fields, which are Lorentz vectors. Our Latin indices should be somehow
transformed into Lorentz indices before we can really speak of gravitation.
This question is not easy to answer in a satisfactory way. What we can do
now is to speculate on possible origins for such a transmutation. A first point
to look at is the definition of H. We assumed equal dimensions to avoid an
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ill-defined mapping and this led to the transformation (48) of C8; which takes
an object with internal indices into an object exclusively “external.” But the
fact remains that the original group has nothing to do with spacetime. When
the gauge group is the group of spacetime translations T 3,1, H reduces to the
usual vierbeine fields, which appear quite naturally (Aldrovandi, 1991b). In
that case C8 turns up as a true connection for the linear or Lorentz group,
with a Riemann curvature and an additional torsion. However, translation
generators are Lorentz vectors and, in a sense, “external” from the start. We
mention in passing that the Lorentz group does not affect spacetime directly,
but through a representation, the vector representation in this case. It could
happen that the group supposed above, say, the group of the electroweak
interactions, would do the same, so that the relationship to spacetime would
be realized through an intermediate, “interface” representation. This will
depend on the available representations of the gauge group. The group of
electroweak interactions is under study.

A point worth mentioning concerns universality. It is true that gravitation
is the only universal interaction. However, the electroweak interaction pre-
sents a large amount of universality. Though with different strengths, all
particles (except possibly the gluons) couple to it.

For the time being, the only positive clue we have to the possibility of
transmutation is the appearance of torsion in expressions like (46). Torsion
is specifically external, an effect of soldering which is absent in purely internal
gauge bundles. Even when it vanishes, it is responsible for the presence of
two, instead of only one, Bianchi identities. Another point worth remembering
is that our approach is, up to now, purely classical. It is possible that transmuta-
tion come as a quantum effect. Indeed, getting “spin from isospin” was
studied in the seventies (Jackiw and Rebbi, 1976; Hasenfratz and ’t Hooft,
1976; Goldhaber, 1976) as an instanton-induced transmutation of exactly the
required kind. What we have done here has been to leave this question aside
and investigate the purely formal aspects of the approach, to see whether it
presents points enticing enough to justify further study. We think the results
are highly positive.
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